
39

Software Testing with an Operational Profile: OP Definition

CAROL SMIDTS, CHETAN MUTHA, MANUEL RODRÍGUEZ,
and MATTHEW J. GERBER, The Ohio State University

This article is devoted to the survey, analysis, and classification of operational profiles (OP) that characterize
the type and frequency of software inputs and are used in software testing techniques. The survey follows a
mixed method based on systematic maps and qualitative analysis. This article is articulated around a main
dimension, that is, OP classes, which are a characterization of the OP model and the basis for generating test
cases. The classes are organized as a taxonomy composed of common OP features (e.g., profiles, structure,
and scenarios), software boundaries (which define the scope of the OP), OP dependencies (such as those of
the code or in the field of interest), and OP development (which specifies when and how an OP is developed).
To facilitate understanding of the relationships between OP classes and their elements, a meta-model was
developed that can be used to support OP standardization. Many open research questions related to OP
definition and development are identified based on the survey and classification.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verification—
Formal methods, Reliability, Statistical methods, Validation; D.2.5 [Software Engineering]: Testing and
Debugging—Testing tools; G.3 [Probability and Statistics]: Reliability and Life Testing

General Terms: Reliability, Verification

Additional Key Words and Phrases: Software testing, operational profile, taxonomy, usage models, software
reliability

ACM Reference Format:
Carol Smidts, Chetan Mutha, Manuel Rodrı́guez, and Matthew J. Gerber. 2014. Software testing with an
operational profile: OP definition. ACM Comput. Surv. 46, 3, Article 39 (February 2014), 39 pages.
DOI: http://dx.doi.org/10.1145/2518106

1. INTRODUCTION

OP Definition
As defined by Musa [1993], “an operational profile [(OP)] is a quantitative characteri-
zation of how a [software] system will be used.” It “consists of the set of operations that
a system is designed to perform and their probabilities of occurrence.”

OP Importance
An OP helps derive reliability estimates by testing a software system as if it was in
the field. An OP increases productivity, increases reliability, and shortens development
time. As stated by Musa [1993], “Using an operational profile to guide testing ensures
that if testing is terminated and the software is shipped because of imperative schedule
constraints, the most-used operations will have received the most testing and the
reliability level will be the maximum that is practically achievable for the given test
time.”

Authors’ address: C. Smidts, C. Mutha, M. Rodrı́guez, and M. J. Gerber, 201 W. 19th Ave, Columbus,
OH-43210.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 0360-0300/2014/02-ART39 $15.00

DOI: http://dx.doi.org/10.1145/2518106

ACM Computing Surveys, Vol. 46, No. 3, Article 39, Publication date: February 2014.

http://dx.doi.org/10.1145/2518106
http://dx.doi.org/10.1145/2518106

39:2 C. Smidts et al.

Testing with an OP
Testing with an OP generally involves a number of steps. These include (1) develop-
ment of the OP model (including model analysis and validation), (2) derivation of OP
probabilities, (3) generation of test cases, (4) test planning (including the design of
pass, fail, and stop criteria), (5) test execution, and (6) analysis of results. An OP model
consists of a representation of how the software system will be used. Representations
based on tree-like models, Markov chains, and statecharts are commonly used. The
core of an OP model typically consists of a number of events that represent the use of
the software system (such as mouse clicks or data input, as well as customer/user ac-
tors, configuration alternatives, and software functions) together with their associated
occurrence probabilities. These probabilities can be determined a number of different
ways, generally by employing techniques built on the analysis of historical data, exper-
imental data, or expert judgment.1 OP models are commonly evaluated and validated
with respect to field use assumptions and test constraints. Test cases can be generated
with a higher or lower degree of automation from the OP models by employing differ-
ent techniques (random walk models, analytical formulae, etc.) and strategies (with
respect to probability levels, test cost, model coverage, etc.).

Need for this Survey
As stated by Juhlin [1992], “the foundation of Software Reliability Engineering (SRE) is
Operational Profiles. No matter how sophisticated the metric and modeling techniques
used, they’re only as good as the data that serves as input to them. That data, in turn,
is only as good as the methods used to generate it. For SRE, those are the methods that
define and implement the Operational Profile.”

This survey is necessary because no related survey on OP testing currently exists
in the literature. Furthermore, authors and practitioners define and apply OP in ways
that differ to various extents. How they are defined and applied depends on multiple
aspects such as the application domain (safety-critical systems, Internet systems), the
modeling language (tree-like models, Markov chains, finite state machines), the scope
(consideration of the OS, the hardware, or other software running on the same com-
puter), the number of profiles (customer, functional), the determination of probabilities
(use of historical or experimental data), and the employed testing approach (model-
based, partition). Because of these differences, the usefulness of testing with an OP is
best assessed by considering the multiple facets and perspectives. The survey, analysis,
and classification provided in this paper is oriented toward this end.

Organization of this Article
The topic of OP testing is vast but involves two distinct phases: (1) OP development and
(2) OP-based testing. In this article, we address the characteristics of OP development
and their classification and relationships. Related papers that focus on these topics are
discussed in detail.

The organization and topics covered in this article are as follows: Section 2 describes
the methods used to identify research papers related to the definition of the OP model,
generate the OP classes, and classify the papers found. Section 3—the bulk of the
article—describes and discusses the OP classes. A meta-model outlining the relation-
ships between the classes of the OP model is also provided in Section 4 and fully

1The incorporation of expert judgment in software reliability is crucially important to software developers
and researchers. It involves the elicitation and aggregation of the opinions of experts on relevant topics; e.g.,
how an attribute may affect the reliability of a piece of software or the impact on reliability of a module or
the number of lines of code. Campodónico and Singpurwalla [1995] present a variation of the Musa-Okumoto
process using expected number of software failures as expert knowledge.

ACM Computing Surveys, Vol. 46, No. 3, Article 39, Publication date: February 2014.

Software Testing with an Operational Profile: OP Definition 39:3

Table I. Results Obtained through the Inclusion and Exclusion Process

Search Term
IEEE

Explore Citeseer
Science
Direct

Google
Scholar Unique

Abstract or Title
Title or
Abstract

Title or
Abstract

Include citation
Title or
Abstract Title

“operational profile” 171 141 34 156 388
“Usage model” software 38 53 15 27 86
“usage profile” software 16 18 8 7 38
“usage distribution” software 3 3 0 1 7
“input distribution” software 7 5 3 0 13
“input profile” software 2 3 2 2 6
“user profile” software 24 54 19 8 89
“usage testing” software 7 8 4 7 19
“operational distribution” software 4 25 0 0 27
“profile of use” software 0 43 1 0 40
“usage chain” software 0 0 1 6 6
Totals 915 542

Elimination Round 1 350
Elimination Round 2 84
Elimination Round 3 55

Elimination Round 4 19

described in Appendix B. Section 5 provides a discussion of open research questions as
they relate to the OP classes and the OP model definition. Finally, Section 6 concludes
the article.

2. REVIEW AND CLASSIFICATION METHOD

This section describes the mixed method used to identify research papers related to OP
definition, generate classes, and classify the papers found. The method builds on the
systematic mapping methods described or used in Petersen et al. [2008], Jørgensen and
Shepperd [2007], and Kitchenham [2004] and on qualitative analysis (more specifically
grounded theory) [Charmaz 2006; Corbin and Strauss 2008; Glaser and Strauss 2009].
Each such method has been modified to fit our purpose.

Inclusion and Exclusion Criteria
Inclusion and exclusion criteria and process are discussed in this section.
Inclusion
A paper was included in our survey if it described OP research. “Operational profile”
and semantically equivalent search terms were used to select relevant papers. The
results are given in Table I. Note that “software” was added to further narrow down
the search. The search focused on the title and/or the abstract of the paper as the
search engines permitted. A total of 915 papers that satisfied the criteria were found.
The search was performed on July 24, 2013 in the following online databases: IEEE
Explore, Google Scholar, Citeseer, and ScienceDirect. The search includes all papers
published by that date. The set of 915 papers was reduced by eliminating duplicates;
542 unique papers resulted.

Exclusion
Papers were excluded through four rounds of elimination. The criteria used in each
round of elimination are discussed in the following text, and the results are given in
Table I.

ACM Computing Surveys, Vol. 46, No. 3, Article 39, Publication date: February 2014.

39:4 C. Smidts et al.

Elimination Round 1: The downselection of papers considered the following crite-
ria. Papers, books, and thesis were excluded if:

1. They were not published in English.
2. There was no paragraph on OP.
3. The paper, book, or thesis was strictly less than four pages.
4. A paper existed on a similar topic.
5. The paper, book, or thesis could not be retrieved using IEEE Explore, CiteSeer,

Google, Electronic Journal Center, or ACM Digital Library.

After the first round of elimination, 350 papers remained (see Table I). These papers
were then downloaded for further elimination based on a detailed analysis.

Elimination Round 2: A second round of exclusion to identify OP papers with
treatment of OP definition issues was undertaken. In this round, we used Atlas.ti
[Muhr and Friese 2004], a qualitative research analysis tool, to perform a thorough
search. The search formula is given in the following text, and the search was performed
only on the title and abstract.

Search := express ∗ |re f ine ∗ |generate ∗ |exten ∗ |def in ∗ |develop ∗ |creat ∗ |special
∗|determin ∗ |deriv ∗ |procedure|design ∗ |construct ∗ |approach|

speci f ic ∗ | f ormulate∗
The search terms are semantically equivalent forms of “definition,” where “∗” indicates
a wild character and “|” indicates “OR.” Seventy-nine papers resulted from this search.
The papers excluded by Atlas.ti were manually evaluated to identify “false rejects,” that
is, papers that included a section on OP definition but were excluded by the Atlas.ti
search tool. Five false rejects were identified. This second round of exclusion resulted
in 84 papers. After this round of exclusion, no thesis or books remained.

Elimination Round 3: A third round of elimination was then conducted to identify
papers with significant OP definition content. The exclusion criterion was papers with
an OP definition section strictly less than two columns. In addition, papers less than
or equal to two pages were rejected. This round of exclusion narrowed the number of
papers down to 55 “primary” References.

Elimination Round 4: A fourth round of elimination was based on subjective eval-
uation and expert judgment. Out of the set of 55 papers, 16 papers were selected.
During this subjective evaluation, papers whose OP representation was similar to
other authors’ (such as Musa, Whittaker, Runeson, etc.) were eliminated. The 41 pa-
pers eliminated provide insights into usage probability calculation and usage data
collection. However, these topics are not the focus of this article. In addition, while
reviewing the 55 papers, two papers were discovered (both by Whittaker) that did not
appear in our initial search. These papers were recovered from a Google search because
they were not located in our databases. The Huang et al. [2007] paper did not appear
in any of the searches or reviews. However, it was known to be directly relevant and
was added to the pool of papers. These three new papers were added to the “primary”
list.

The complete list of paper sources is given in Table VXI in Appendix A. The distri-
bution of 19 papers published per year is shown in Figure 1.

Research Questions
The papers were then analyzed to respond to the following questions:

1. What are the main distinguishing characteristics of the operational profiles?
1.1. What is the scope of the operational profile?
1.2. What are the typical structures of the operational profile?

ACM Computing Surveys, Vol. 46, No. 3, Article 39, Publication date: February 2014.

Software Testing with an Operational Profile: OP Definition 39:5

Fig. 1. Number of papers published per year.

Fig. 2. Coded segment of text extracted from Whittaker and Poore [1993].

1.3. When in the lifecycle phase is the operational profile typically developed?
1.4. Is the operational profile typically developed for the system as a whole?
1.5. What are other operational profile characteristics?

Papers with a major focus on the research questions were identified and further refined
into classes.

Class Identification Process
This section describes the process followed for developing OP classes. The process is
based on the qualitative analysis [Saldana 2012] of segments of text belonging to the
19 downselected papers (given in Table V). The qualitative analysis reviews papers and
attempts to identify salient features and repeating patterns. To do so, specific sections
of text are evaluated by an analyst. The sections of text considered include the title,
the abstract, the introduction, and OP definition section for the various papers. These
sections were selected because they contain the motivation of the paper and set the
stage for the research discussed in the paper. In addition, focusing on these portions
of text allows us to restrict the analysis and save time and effort. These sections were
coded by closely following the text (i.e., using mostly in vivo coding2). For example,
Figure 2 provides a coded segment of text extracted from Whittaker and Poore [1993].
The coding was performed using Atlas.ti, a qualitative research analysis tool. Having
obtained these low-level codes, higher-level categories were formed based on recur-
rence in the codes (see Table II). Next, the high-level categories were filtered to retain
categories of immediate relevance to our research questions (see Table III). In addi-
tion, we examined the interrelationships between classes using meta-modeling. This
helped further clarify the definitions of each class and make the classes as indepen-
dent as possible. This step is similar to the notion of axial coding in grounded theory.

2In vivo coding is the practice of assigning code to a data segment using the words in that segment. In vivo
coding captures the key ideas of the researcher in their own terms.

ACM Computing Surveys, Vol. 46, No. 3, Article 39, Publication date: February 2014.

39:6 C. Smidts et al.

Table II. Example of Low-Level Codes and Corresponding High-Level Categories from Whittaker and
Poore [1993]

Codes (Low-Level) Categories (High-Level)
“Arcs of Markov chain determines sequences”

“Arcs of Markov chain ordering of events”
“Ergotic nature of Markov chain- describe underlying statistic”
“Finite state discrete parameter Markov chain to model usage”
“Finite state, discrete parameter”
“Markov chain good model”
“Markov chain testable”
“Markov chain to conduct statistical testing”
“Markov chain tractable stochastic process”
“Markov chain useful for defining probability system”
“Markov from spec as basis of OP and test generation for statistical testing
Rich body of theory/algorithm/”
“Sates of Markov Chain entries from input domain”
“Standard analytical results of Markov chains have important
interpretations”
“Statistically typical test cases can be obtained from Markov Chain”

Markov Chain

Table III. High-Level Categories Formed from Coding Sections of Whittaker and Poore [1993], Gittens et al.
[2004], and Huang et al. [2007]

Paper Categories (High-Level) Filtered Categories OP Classes
Whittaker & Poore [1993] Cleanroom

Markov Chain Markov Chain Structure
OP
Reliability Certification
Statistical Testing
Sequence of Events Sequence of Events Scenario
Specification Specification Early
Usage Model

Gittens et al. [2004] Configuration Configuration Configuration
Current OP
Extend OP Definition
External Input Data External Input Data Input Data
New Profile New Profile Profile
OP Deficiencies
OP Extension Properties
OP Limited

Huang et al. [2007] Deficiencies
Develop New Method
Extend Fault Injection
Fault Injection
Fault Injection Profile Fault Injection Profile Profile
Hardware Failure Hardware Failure Executive Scope
Physics of Failure
Representative Fault Models
Software Reliability Prediction
System Type System Type Field-of-Interest

The meta-model is provided in Appendix B. The class identification process is depicted
in Figure 3. The process is more complex because it involves constant comparison to
already established codes, categories, classes, and meta-models and may require re-
vision of already attributed categories and meta-models. The process is iterative and
was repeated for all 19 papers. In addition, if classes or models are still changing, the

ACM Computing Surveys, Vol. 46, No. 3, Article 39, Publication date: February 2014.

Software Testing with an Operational Profile: OP Definition 39:7

Fig. 3. Extraction of OP classes.

Table IV. Example Keywords Used to Operationalize the Classification Process

Class Keywords Comments/Insights
Profile customer profile, user

profile, configuration
profile, system-mode
profile, data profile,
process profile

If the OP contains one profile, it was classified as single-profile;
else, multiple-profile. The concept of multiple profiles led us to
investigate different types of inputs and their providers. Because
of the varied nature of providers, we created the originator class.

Structure Markov chain, state
machine, statechart, set,
tree, hierarchy, flow
graph, graph, model

The structures found with these keywords resulted in two
important insights. First, probability of occurrence is a property
of the structure and is not a distinct class. Second, computability,
which accounts for usage dynamics, is a property of the modelling
technique used. Upon realizing these dependencies, we removed
these two classes from our original classification. Also, some
unconventional and hybrid (state-based plus tree) structures
were discovered. After analyzing these papers’ context, we
formed the class field-of-interest. We found that the structure
and inputs of an OP are modified based on fields of interest.

process is repeated. The analysis is documented in the tool and can be reviewed by an
independent reviewer if and as necessary.

Classification Procedure
In this step, the 19 papers selected are classified with respect to the OP classes de-
veloped. Using the in vivo codes, the category names and class names identified in
the previous subsection, we define a series of keywords to establish a systematic clas-
sification process. These keywords are given in Table IV and Table XII in Appendix
A. Classification was facilitated by reading only the section of each paper that de-
scribed the OP. Because an OP could be hybrid, subclasses were not always considered
mutually exclusive.

To determine the extent to which the classification of papers is repeatable, we also
evaluated the inter-rater agreement achieved by two consecutive sets of analysts us-
ing both Cohen Kappa [Sim and Wright 2005] and AC1 [Gwet 2002] statistics. The
analysis shows high inter-rater agreement for each of the two measures (Cohen Kappa
coefficient and AC1) for 9 classes out of 11, medium agreement for 1 class and low

ACM Computing Surveys, Vol. 46, No. 3, Article 39, Publication date: February 2014.

39:8 C. Smidts et al.

Fig. 4. Classification process for individual papers.

agreement for 1 class. The two latest results stem from ongoing fluctuations in the
definitions of the classes at the time of first classification. The inter-rater agreement
therefore demonstrates sufficient stability in the classification.

The process of classification is described in Figure 4.

Selection and Classification Process Quality
We should concern ourselves of the quality of the process defined because that will
determine the quality of the outcomes of the study. Aspects to consider are valid-
ity, reliability, and generalizability [Gibbs and Lewins 2005]. According to Gibbs and
Lewins [2005], validity can be ensured using four different approaches (triangulation,
auditability/audit trail, use of negative cases, and constant comparison). Out of these,
auditability (i.e., providing enough detail for the approach to be auditable) and con-
stant comparison (i.e., checking code and their consistent interpretation throughout the
sample of papers) are the techniques used in this article, as illustrated in the earlier
discussion. For ensuring reliability, Gibbs and Lewins [2005] suggest the use of notions
of interrater agreement and of member validation. Member validation would consist in
asking the authors of the 19 papers selected to review the classes and meta-models de-
fined in this article and the classification of their papers with respect to the OP classes
created. Member validation is difficult in practice and may lead to biases; therefore, it
was not pursued. In this article, we ensure reliability through interrater agreement of
classification of papers into OP classes. Generalizability is difficult to address because
the sample was not drawn randomly. The sample was selected through a systematic
exclusion process, and all remaining papers were included. In addition, papers were
included if they were considered valuable to the study. This is in alignment with the
theoretical sampling principles of grounded theory where the sample is chosen accord-
ing to the needs of the study (i.e., the classes that form from the analysis of the data).
In our context, generalizability would involve the extent to which the knowledge gen-
erated can be extended to other papers that were not part of the search but nonetheless
could exist in other databases. To ensure generalizability in qualitative analysis, it is
recommended that a description of the population from which the findings were derived
be defined. The findings would be generalizable to a similar yet unknown population.
In our case, these include the base papers found through keyword searches described
in Table XII. Base papers are papers that significantly increase the knowledge related
to OP definition.

3. OPERATIONAL PROFILE CLASSES

A software OP is a probabilistic characterization of software usage—probabilistic be-
cause the exact usage prediction of software is impossible (infeasible/impractical) (see
Figure 5). As such, usage modeling is essential and use of structures evident. A struc-
ture enables the modeling of the desired usage and also provides a computational
framework. As such, the structure is the backbone of the usage modeling.

ACM Computing Surveys, Vol. 46, No. 3, Article 39, Publication date: February 2014.

Software Testing with an Operational Profile: OP Definition 39:9

Fig. 5. Software operating in an environment.

A software system is inherently an interactive system that communicates with dif-
ferent types of users such as humans, and other hardware or software systems to
fulfill its purpose. The diversity of the environment warrants specific profiles to cap-
ture particular interactions. The software boundary is a natural separation between
the environment and the software system. Elements outside the boundary are a part
of the environment, and elements within the boundary are a part of the software.

Musa [1993] proposes a five-step OP development approach in which he progressively
decomposes the entire system (software and its environment) and builds multiple
profiles such as “the Customer profile,” “the User profile,” “the System-mode profile,”
“the Functional profile,” and “the Operational profile.” The software usage is primarily
modeled using a tree-based structure, where each tree node corresponds to elements
of the particular profile. Each node is assigned a probability of occurrence. He also
characterizes the input data of the operational profile and its originator (e.g., human).

Whittaker and Poore [1993] aim to analyze the software specification before the de-
sign and coding phase. One of the fundamental steps in this analysis is the construction
of a Markov chain (state-based) model to define the software usage. The model could
be built for a system-mode or the entire system. He does not provide any guidelines or
rules on how to model configuration changes. The model need not explicitly consider
the sequences of input to model the transitions. If the input sequence is not available,
transitions with uniform probability distribution accounts for the state change during
software usage. Undoubtedly, if the input sequences are available (maybe through di-
rect observation of user behavior), more accurate usage and usage probabilities can be
obtained. Whittaker does not explicitly characterize the inputs, nor specifies the type
of originator.

The previous discussion leads us to a classification scheme shown in Figure 6. The
Common Features correspond to distinguishing characteristics of an OP. The classes
under common features are independent of each other. The Software Boundary cor-
responds to a partitioning of the elements into those pertaining to the software and
those that do not. The classes within the system boundary are strongly related to some
of the classes in common features. For example, Input Data is related to Originator.

ACM Computing Surveys, Vol. 46, No. 3, Article 39, Publication date: February 2014.

39:10 C. Smidts et al.

Fig. 6. Operational profile classes.

The Common Feature and Software Boundary classes were created from the funda-
mental understanding of the OPs. The Dependency class includes classes that account
for additional, available information and can help significantly improve the accuracy
of the OP profile. Dependency may lead to modification of the common features of the
basic OP. This class was created based on information discovered during the survey.
The classes under Development mostly address the question of when and how an OP is
developed.

ACM Computing Surveys, Vol. 46, No. 3, Article 39, Publication date: February 2014.

Software Testing with an Operational Profile: OP Definition 39:11

Fig. 7. Operational profile meta-model.

The relationship between different classes and their elements is completely devel-
oped in the meta-model shown in Figure 7 and the meta-models shown in Figures 8
through 14 in Appendix B.

Figure 6 shows an OP taxonomy that consists of a hierarchy of classes and subclasses
that focus on different perspectives and aspects of OP. Each is discussed in the following
sections.

3.1. Common Features Classes

This section describes the Common Features class of OP. The Common Features class
is divided into the classes Profile, Structure, Abstraction Level, Originator, Scenario,
Mode, Configuration, and Critical Operations. Refer to Table V for a classification of
the papers reviewed with respect to these classes

3.1.1. Profile Class. The profile is a cross-sectional usage view of the application along
a given dimension. It includes the elements of that dimension and the occurrence prob-
abilities of these elements during use. An example set of possible profiles is presented
in Table VI.

It is worth noting that the profiles provided in Table VI might be defined and applied
in different ways by authors and practitioners because of different interpretations of
the notions of function, operation, process, environment, and configuration.

An OP may contain one or several profiles. Accordingly, it can be classified as a single-
profile OP or a multiple-profile OP. The profiles of a multiple-profile OP commonly
exhibit dependency relationships. For example, a typical multiple-profile OP can be
defined as [Musa 1993]:

{customer profile, user profile, system-mode profile, functional profile, operational
profile}

ACM Computing Surveys, Vol. 46, No. 3, Article 39, Publication date: February 2014.

39:12 C. Smidts et al.

Ta
bl

e
V.

C
la

ss
ifi

ca
tio

n
of

P
ap

er
s

R
ev

ie
w

ed

ACM Computing Surveys, Vol. 46, No. 3, Article 39, Publication date: February 2014.

Software Testing with an Operational Profile: OP Definition 39:13

Table VI. Example Set of Possible Profiles

Profile
Dimension Definition Example(s)
Customer Frequency-of-use probabilities of a software

product by different customer types, where a
customer type would correspond to a set of
entities or organizations acquiring the software
product and using it in a similar way

Frequency-of-use of an operating
system in the aerospace industry
vs. the automotive industry

User Frequency-of-use probabilities of a software
system by different user types, where a user
type would correspond to a set of entities or
organizations employing the software system in
a similar way

Expert vs. untrained users

System-mode Occurrence probabilities of the various execution
modes of a software system

Initialization, administration, or
online modes

Environmental Occurrence probabilities of different
environmental factors affecting the usage of a
software system

Probability that a flight software
system is used in a radioactive
environment such as deep space vs.
a low-radiation environment such
as Earth

Functional Occurrence probabilities of the several functions
of a software system

Functions of adding or removing a
user account in a server system

Operational Occurrence probabilities of the various types of
tasks or operations accomplished by a software
system

Adding required information of a
recently hired employee into a
server system

Usage Occurrence probabilities of states and
transitions in a graph model representing the
software system’s use

Markov chains, statecharts, etc.

Configuration Occurrence probabilities of physical and logical
configurations of a software system

Use of a RISC or CISC hardware
architecture to run a software
system

Structural Occurrence probabilities of quantifiable data
structure attributes of a software system

Number of loops, size of arrays, etc.

Data Occurrence probabilities of the different inputs
of a software system

Data values, ranges, types, etc.

Process Occurrence probabilities of the processes of a
software system

Same as operational profile if a
process is viewed as an operation

in which hierarchical relationships and mapping relations exist (e.g., a hierarchical
relationship exists between customer profile and user profile). For example, let us
consider a payroll application. Two distinct customer groups would include private
organizations and government organizations. Within the “government organization”
customer group, one could distinguish the following user groups: human resources
group, employees group, manger group, and a system administration group.

Other relationships between profiles include the mapping relations found between
system-mode and functions. For example, a maintenance mode would map to start-up
functions, shut-down functions, and reporting functions.

The profile meta-model shown in Figure 9 in Appendix B describes the dependen-
cies between profile and other constructs that are shown in Figure 6 and discussed
throughout Section 3.

3.1.2. Structure Class. Several modeling paradigms are used to describe and build an
OP. They include trees [Arora et al. 2005; Bousquet et al. 1998; Elbaum and Narla
2001; Musa 1993], state-based representations (including Markov chains [Guen et al.
2004; Popovic and Kovacevic 2007; Prowell 2003; Whittaker and Thomason 1994],
probabilistic event flow graphs [Brooks and Memon 2007], Harel statecharts [Shukla
et al. 2004a]), and sets [Gittens et al. 2004; Hamlet et al. 2001; Huang et al. 2007,

ACM Computing Surveys, Vol. 46, No. 3, Article 39, Publication date: February 2014.

39:14 C. Smidts et al.

Table VII. Example Set of Possible Structures

Author Structure Type Elements used and Their Interpretations
Bousquet et al. [1998] Markov and Tree (a tree

is a Markov chain with
nodes that are trees)

A binary decision diagram (a type of tree) is used to
define an OP. The tree node is a tuple of the input
variable state and a list of conditional probabilities
for that input state. The outgoing tree branches
from nodes are the values taken by the variable.
The output of the tree is an array of the input space
represented as a set of binary equations.

Whittaker and Thomason
[1994]

Markov Chain A state is an “externally visible mode of operation
that must be maintained in order to predict the
application of all system inputs.” The transition
represents an input element and its probability of
occurrence.

Gittens et al. [2004] Sets Gittens et al. [2004] define multiple profiles. Each
profile is expressed as a set. For example, a
structural profile includes a measurable quantity,
its values, and its frequency of occurrence.

2011; Woit 1993]. Examples of the possible structure are given in Table VII. A sample
representation of these structures and their constituent elements is shown Figures 10,
13, and 14 in Appendix B.

Probability of Occurrence
The probability of occurrence of the elements (nodes, transitions, inputs, events, etc.)
found in the definition of profile varies conditionally with other elements in a man-
ner that is complex to describe and is inherently embedded in the structures we
have just described. As an example of a straightforward usage case, the probability
of occurrence of a leaf node in a tree may be conditional on N other predecessor leaf
nodes in the tree [Musa 1993]. As another straightforward usage example the OP is
1-conditional for Markov chains (where the next state of the OP model only depends on
the current state [Guen et al. 2004; Popovic and Kovacevic 2007; Shukla et al. 2004a;
Whittaker and Thomason 1994]) or unconditional [Elbaum and Narla 2001; Gittens
et al. 2004; Hamlet et al. 2001; Juhlin 1992]. Brooks and Memon [2007] define OPs
that are N-conditional, where the element of interest is the input to the GUI applica-
tion and where dependence lies between N successive inputs. However, N-conditional
probabilities between different inputs are tricky and difficult to represent into com-
monly available structures. To express such N-conditional probabilities, hybrid or new
structures are warranted. For example, Bousquet et al. [1998] embed a binary decision
diagram, a tree, into the Markov structure to model specific software usage. On the
other hand, Woit [1993] used a set-based approach and grouping of prefixes of vari-
ous lengths with similar impact on the selection of the next input into sets. Runeson
and Wohlin [1993] express N-conditionality between leaf nodes (each representing a
profile in a profile hierarchy) and 1-conditionality using a Markov chain to represent
transitions within a leaf node (modeling microbehaviors within a profile).

Computability
An OP that relies on an executable model is referred to as executable; otherwise, it is
referred to as nonexecutable. Examples of executable models are those based on Markov
chains, Harel statecharts, probabilistic event flow graphs, and so on. In general, the
ability of an OP model to be executed can potentially help improve the computability
of various steps of the OP testing process, bringing important benefits on aspects such
as model verification and validation, determination and computation of probabilities,
derivation of test cases, computation of quality metrics of test cases, execution of test

ACM Computing Surveys, Vol. 46, No. 3, Article 39, Publication date: February 2014.

Software Testing with an Operational Profile: OP Definition 39:15

cases on the software under test, development of runtime oracles for passed/failed test
criteria, and implementation of stopping test criteria.

Note that an OP approach can be executable but nonautomated. For example, Shukla
et al. [2004a] and Woit [1993] followed executable approaches for the definition and
development of the OP; however, their papers mention that tool support/development
will be the object of future work. The reverse is also possible, that is, an OP approach
can be nonexecutable but automated (i.e., supported by tools). Indeed, although an
executable OP might intuitively be considered as more powerful than a nonexecutable
OP, it is also necessary to take into account other aspects such as the maturity and
characteristics of the modeling technique chosen (e.g., pros and cons, available features,
applicability, descriptive power) or the availability and type of automated tools (see
Section 3.4.3). For example, a static OP methodology that relies on the use of standard
UML models can potentially access a large number and variety of automated tools and
techniques for different purposes that may significantly benefit the entire OP testing
process.

3.1.3. Abstraction Level Class. The concept of OP has commonly been related to system-
level testing because reliability measurements are traditionally most beneficial when
targeted to a software system viewed as a product. Today, a large number of software
products are primarily developed to be used (or reused) as components within other
products and systems. For example, this is the case of many COTS (Commercial Off-
The-Shelf) software such as operating systems. OP testing thus becomes an attractive
solution to measure the reliability of these components. An OP aimed to test software
components is referred to as a component-level OP. A major challenge of applying
OP testing to a software component is that, compared to a system, the number of
operational environments that the component may encounter in the field is larger, more
diverse, more complex, and more difficult to model and foresee a priori. Likewise, initial
operational testing of a component is infeasible because of the abundance of possible
end users and usage patterns. Because component developers may lack information on
the final application environment, a component will be designed and developed for a
hypothesized application environment, which may differ from the actual one. Because
of this, the component’s use becomes context-dependent and must be tested in the
environment in which it will be used. The Ariane 5 disaster cited by Weyuker [1998]
(in which a CNES launch vehicle exploded because of an insufficiently tested software
component reused from a previous vehicle) demonstrates that not testing components
in their new implementation can lead to substantial and possibly disastrous failures.
Weyuker stresses that considerable testing of components in their new environment is
necessary to ensure proper behavior and adequate reliability.

That said, few works have addressed OP testing of software components [Hamlet
et al. 2001; Shukla et al. 2004a; Woit 1993]. The OP specification technique for soft-
ware modules proposed by Woit [1993] is built upon the assumption that unlike other
software such as batch programs, the OP of modules cannot be accurately described
using unconditional probabilities. It is claimed that an OP model based on a Markov
chain would be more suitable but still limited because probabilities are conditioned
on the previous event only. Accordingly, in the proposed OP specification technique,
the probability of generating a module input can be dependent on any previous input.
The technique defines custom syntax and semantics and is built on concepts such as
execution prefix (subsequence of a module execution3) or events (change of an object’s

3“An execution prefix is any subsequence of a module execution . . . _.E1.E2. . . . Eti, where “_” refers to module
initialization or reinitialization, Ej is the jth event issued after this module initialization (or reinitialization),
and Eti, is the last event issued before the next module re-initialization (1�j�ti.)” [Woit 1993].

ACM Computing Surveys, Vol. 46, No. 3, Article 39, Publication date: February 2014.

39:16 C. Smidts et al.

state) among others. An unbounded integer stack is used as an example. The technique
also includes a procedure that automatically generates test cases from the OP.

Hamlet et al. [2001] points out the fact that when a “component is embedded in a
system,” the component profile depends on system input profile, “components position
in the system, and the actions of other components.” He suggests that development
of component-level OPs should be based on two main ideas: (1) profile mapping, a
component datasheet should specify “mappings from a [system] profile to reliability
parameters,” and (2) component subdomains, partition the component’s “input space
into functional sub-domains” and assigns relative weights to each sub-domain and
within a sub-domain a uniform distribution probability.

Shukla et al. [2004a] propose an approach to construct the OP of software compo-
nents in the form of Harel statecharts. A component is viewed as a piece of code with
well-defined operations in an Application Programming Interface (API) such as classes
and objects of the Object-Oriented Programming methodology. The statechart of a com-
ponent is built by analyzing usage data about its execution flow as (a sequence of)
executed operations. Usage data includes both available execution traces and intended
assumptions (“[operation] sequences obtained by hypothesizing runs of the software
by a careful and reasonable user”). The statechart probabilities are calculated by ana-
lyzing transitions and frequencies of operations in the usage data. Guidelines are also
provided to model constraints and relationships of operation parameters, which are
intended to facilitate the generation of suitable values for input parameters during
testing.

3.1.4. Originator Class. The OP literature distinguishes different types of input
providers called originators in this article. For example, in a section of the literature,
well represented by Musa’s research, the human factor is considered as an important
dimension and is explicitly taken into consideration commonly in the form of customer
and user profiles included in the OP. Attention to this type of originator emerged in the
information technology community when it focused on testing information technology
applications in industrial environments (e.g., Arora et al. [2005], Elbaum and Narla
[2001], Gittens et al. [2004], Juhlin [1992], and Musa [1993]). Another cross-section of
the literature does not distinguish explicitly between user inputs and other types of
system inputs (software, hardware, environmental, etc.), but these are commonly im-
plicit in the models used (e.g., Markov chains) (see, e.g., Bousquet et al. [1998], Brooks
and Memon [2007], Hamlet et al. [2001], Guen et al. [2004], Huang et al. [2007], Prowell
[2003], Shukla et al. [2004a], Popovic and Kovacevic [2007], Whittaker and Thomason
[1994], and Woit [1993]). An interesting observation is the fact that in component-based
OPs, the originator is unspecified (see Table V). Indeed, one a priori does not know from
whom the component will receive its inputs. The inputs to the component depend on its
position in the software architecture that may vary from one use of the component to
another. A third group of papers explicitly distinguishes originators of type hardware,
human, and software [Gittens et al. 2004; Walton et al. 1995]. A fourth group identifies
an originator of type hardware [Huang et al. 2007]. Therefore, the originator class is
divided into hardware, human, software, or unspecified (with the understanding that
multiple types of originators may co-exist). The originator meta-model is shown in
Figure 11 in Appendix B.

3.1.5. Scenario Class. Scenario is a sequence of user or externally generated inputs
(mostly sequences of events) that accomplish a specific application goal. For example,
a user wanting to open a Word document in Windows would first select the “File” menu
option, then select the “Open” option, and so on. This sequence of steps forms a scenario.

An OP built using explicit scenario information is labeled as scenario-aware; other-
wise, it is termed as scenario-unaware.

ACM Computing Surveys, Vol. 46, No. 3, Article 39, Publication date: February 2014.

Software Testing with an Operational Profile: OP Definition 39:17

Examples of scenario-aware OP approaches follow. Shukla et al. [2004a] develop the
structure of the OP using actual usage data, which is in the form of traces, that is,
sequences of operations’ executions. Woit [1993] uses execution prefixes, that is, sub-
sequences of a module execution that are composed of events and start with module
initialization or reinitialization, to specify the OP. Brooks and Memon [2007] use ob-
served sequences of events to build the probabilistic event flow graph. In Guen et al.
[2004], UML sequence diagrams can be used to construct the OP. Yan et al. [2004], Zang
et al. [2011], and Ai et al. [2012] use UML annotated use case and sequence diagrams
to derive a Markov chain usage models.

On the other hand, OPs constructed with Markov chains, state machines, and stat-
echarts encode implicit sequence information (if the models were not directly derived
from sequence information). Prowell [2003] is an example of such implicit consideration
of scenarios and, as such, is classified as scenario-unaware.

3.1.6. Mode Class. A mode corresponds to a particular type of execution of the soft-
ware system, such as administrator mode, startup mode, safe mode, shutdown mode,
and so on. A mode can be “a set of functions or operations that are grouped for con-
venience in analyzing execution behavior” [Musa 1993]. Examples include user group
(administration vs. maintenance), user experience (novice vs. expert), and so on.

A mode can also be a state or a set of states [Bousquet et al. 1998; Whittaker and
Thomason 1994].

A state of a software system corresponds to a specific set of values that a certain group
of (software) variables or conditions of interest can take during operation. Examples
of states include overload, nominal, and failure. For example, an operating system
usually contains a variable (or a set of variables) specifying the maximum number of
threads, tasks, or processes that can be created and executed at any time depending
on the capacity and performance of the CPU. Different states can be defined if such a
limit is reached (overload state) or exceeded (failure state), while an average number
of processes could be considered as the nominal state.

The modes form the system-mode profile [Arora et al. 2005; Musa 1993] or the
process-mode profile [Gittens et al. 2004]. An OP could be mode-aware if it explicitly
considers modes or otherwise mode-unaware.

3.1.7. Configuration Class. A configuration of a software system corresponds to a setup
of the operational (and testing) environment. For example, an Internet browser appli-
cation can usually operate with different types of execution platforms (Intel, AMD),
operating systems (Linux, Windows), or runtime options (JavaScript enabled or dis-
abled, browser history enabled or disabled). Therefore, a choice needs to be made for
each available option that will lead to a particular configuration of the system. Most
software applications can also be customized during the compilation process (e.g., to set
the value of certain internal variables, such as the maximum number of processes in
an operating system). The choice of a specific execution mode or state for testing would
also be part of the configuration of the testing environment (e.g., testing a program in
administrator mode vs. testing the same program in user mode).

In the functional profile [Musa 1992], the so-called environmental variables describe
the “conditions that affect the way the program runs,” (e.g., hardware configuration).

An OP that explicitly considers configuration is called configuration-aware; other-
wise, it is called configuration-unaware.

3.1.8. Critical Operations Class. In general, reliability testing (with or without an OP)
focuses on the most frequently used operations and functions of a software system.
However, the case of critical-but-infrequent operations (or functions) is also well known.
A critical-but-infrequent operation or function is one that rarely occurs during the

ACM Computing Surveys, Vol. 46, No. 3, Article 39, Publication date: February 2014.

39:18 C. Smidts et al.

system lifetime; however, if it occurs and leads to a system failure, the severity of such
a failure will be high (e.g., system loss, large financial loss, or loss of human life). An
example is a software routine that triggers a vehicle’s airbag in the event of a collision.
An OP methodology that provides explicit means to address critical-but-infrequent
operations and functions is referred to as criticality-aware; otherwise, it is criticality-
unaware. It should be noted that many of the currently critically-unaware approaches
could easily be extended to reflect criticality; however, they are not extended to reflect
criticality and are, therefore, classified as criticality-unaware.

There are multiple ways to determine if a software operation is critical-but-
infrequent. Whether an operation is infrequent is dictated by the occurrence proba-
bilities provided by the OP. On the other hand, well-known techniques to assess the
criticality of operations and functions include criticality analysis techniques such as
(software) fault tree analysis; (software) hazard analysis; (software) failure mode, ef-
fect, and criticality analysis; and impact analysis techniques such as fault injection.

Because the probability of occurrence of the critical-but-infrequent operations is low,
the number of test cases that are nominally allocated to test these operations may not be
sufficient to uncover potential problems. For example, faults within the corresponding
software code may remain undetected. Besides, when a threshold occurrence probability
is defined below which no test case is allocated (e.g., 0.5

N , where N is the total number of
test cases, see Arora et al. [2005]), then some critical-but-infrequent operations might
not be tested at all. The literature [Musa 1993; Arora et al. 2005] proposes several
approaches to circumvent this issue:

(1) Combine infrequent operations. This allows increasing the total number of test
cases allocated to these operations by implementing these tests as a group; however,
it may lead to inconsistencies in the OP because the grouping of semantically
diverse operations and the number of test cases per critical operation may still be
insufficient.

(2) Weigh probabilities by criticality. This allows increasing the number of test cases
per critical operation by modifying the probabilities of the OP; however, it may
distort the final reliability estimates.

(3) Categorize operations according to criticality. This consists of defining categories
of criticality (e.g., high, medium, nominal, low) and developing a separate OP for
each category. Still, the frequency of some operations may remain too low within a
category and the definition of categories may need to be extended to consider other
factors such as frequency.

(4) Assign a “minimum number of test cases for infrequent operations.” This guaran-
tees that these operations will always be assigned a minimum number of test cases,
which is equivalent to applying an acceleration factor (e.g., ratio between test oc-
currence probability and field/OP occurrence probability). However, this technique
may lead to distorted reliability estimates.

Authors such as Musa [1993] recommend the use of Technique 3. In general, the
purpose of these kinds of tests is to sufficiently test the critical-but-infrequent with-
out compromising the accuracy of the reliability estimates or the significance of the
OP as a precise representation of the operational usage of the software system. An
alternative to representing critical operations (which have not been given much at-
tention by the software reliability research community) would be the tailoring of
simulation-based techniques such as those used in the reliability simulation of complex
systems. These techniques (importance sampling-variance reduction techniques [Ham-
mersley and Handscomb 1964]) are designed to handle the accurate representation of

ACM Computing Surveys, Vol. 46, No. 3, Article 39, Publication date: February 2014.

Software Testing with an Operational Profile: OP Definition 39:19

low-probability, high-criticality events with a minimum number of simulation runs
(which here can be considered as the equivalent of tests) while preserving the quantity
of interest (here reliability).

Approaches and Techniques 1–4 can be further classified under three global cate-
gories: (1) adjustment of the allocation of test cases (Techniques 1 and 4), (2) adjustment
of the probabilities of the OP (Technique 2), and (3) splitting of the OP (Technique 3).
An additional category would consist of (4) testing separately the critical-but-infrequent
operations using techniques other than OP testing (e.g., robustness testing, fault in-
jection). Conversely, the integration of faults and invalid inputs into the OP itself
proposed in Section 3.2 would also be an alternative to enhancing the testing of the
critical-but-infrequent operations.

3.2. Software Boundary Classes

This section describes the Software Boundary class of OP. The Software Boundary class
is divided into the classes Executive Scope, External Errors, and Input Data. Refer to
Table V for a classification of the papers reviewed with respect to these classes

3.2.1. Executive Scope Class. The executive scope encompasses the executive layers of
the software such as the hardware platform (which provides basic software executive
resources such as CPU and RAM) and the operating system software (which manages
the basic executive resources and provides higher-level ones such as scheduling, syn-
chronization, and file system). In addition, the executive scope includes other system
and user tasks that concurrently execute and compete for the same executive resources.
An explicit consideration in the OP of the events and errors proceeding from these lay-
ers and tasks leads to an executive-aware OP, in contrast to an executive-unaware OP.

Failures (or errors) propagated from the executive layers or from other tasks that
reach the software application are, for example, a type of input events of the highest
importance that are commonly ignored in an OP. However, these failure events might
not be negligible. For example, Koopman and DeVale [1999] report percentage fail-
ures of POSIX operating systems ranging between 3.8% and 29.5%, while Rodrı́guez
et al. [1999] report percentages for synchronization failures of a microkernel ranging
between 9% and 87%.

Whittaker and Voas [2000] provided didactic examples of failures from the executive
scope that propagate and affect a word processor application even under moderate hu-
man use, namely: a document “is marked read-only by a privileged user,” “the operating
system denies additional memory,” “the document auto-backup feature writes to a bad
storage sector.” Huang et al. [2007, 2011] have proposed to extend the OP with a fault
injection profile that accounts for the failure events that originate in the hardware
platform and their probability of occurrence. This is done by modeling the physics of
failure and propagation mechanisms of the several computer hardware layers from
bottom to top (semiconductor layer, gate layer, register layer).

The executive scope meta-model is shown in Figure 8 in Appendix B.

3.2.2. External Errors Class. In addition to failures originating from the executive scope
of a system, another important type of failure that can reach the external input in-
terface of a software application during operation is an external error. For example,
the inputs provided by a human user may not always be correct: A user may input
a name where a phone number was required or a user may push a wrong button on
a control panel of a nuclear power plant. These are examples of external errors con-
sisting of invalid software inputs that may frequently occur in practice and must be
considered during software testing. Therefore, the OP should not only include nomi-
nal (i.e., correct) inputs from human users (or other nonhuman users such as other

ACM Computing Surveys, Vol. 46, No. 3, Article 39, Publication date: February 2014.

39:20 C. Smidts et al.

computers and systems), but it should also include invalid (i.e., incorrect) inputs that
can reach the external input interface of the software application. If the OP considers
invalid inputs, it is referred to as error-aware, versus an error-unaware OP, which only
considers nominal external inputs.

The analysis of invalid software inputs has traditionally belonged to the realm of
software testing techniques such as robustness testing (e.g., Csallner and Smaragdakis
[2004], Koopman and DeVale [1999], and Rodrı́guez et al. [1999]). It is rare to find in
the OP literature approaches that explicitly address this aspect. An approach broach-
ing this issue was proposed by Popovic and Kovacevic [2007]. The authors introduce
the concept of stress operational profile to refer to a FSM-based OP extended with
additional states and transitions that occur due to invalid inputs. These additional
states and transitions, which are not present in the original OP model, are called
hidden. The authors refer to this approach as model-based robustness testing. The
approach is applied to communication protocols implementations, and the invalid
inputs consist of syntactically and semantically faulty messages. A stress operational
profile “is constructed from a statechart [model of the nominal OP] by adding reactions
[(i.e., hidden states/transitions) to the considered faulty messages] and by adorning
state transitions” with probabilities. Test cases are generated and executed automat-
ically, and their quality is determined by calculating a mean significance confidence
level.

3.2.3. Input Data Class. Input data is defined as input variables with their names, values,
types, and the constraints they need to satisfy. For example, for an ATM machine,
the input data could consist of the PIN of type integer constrained to four digits. The
selection of input data is an ultimate and unavoidable task needed to make testing
happen in practice. This specifically involves determining what actual values are to be
assigned to the input variables of the software under test. An OP approach that provides
explicit means to specify input data is referred to as data-inclusive OP; otherwise, it is
referred to as data-exclusive OP.

Some examples of how different authors approach incorporating input data in the
OP are provided hereafter. Bousquet et al. [1998] describe a simulator that randomly
generates input data that satisfies the environment specification.. Gittens et al. [2004]
provide an extended OP that includes profiles for defining and characterizing test data.
These are referred to as structural profile and data profile. The former characterizes the
structure of the software and provides occurrence probabilities for quantifiable data
structures (e.g., number of loops, size of arrays). The latter provides occurrence proba-
bilities for the values of the different software inputs by taking into account data types,
ranges, most frequently occurring data, largest data lengths, and so on. Shukla et al.
[2004a] provide guidelines for assigning values to input parameters of object-oriented
programs by taking into account the type of the parameters, constraints associated
with individual parameters, and relationships across parameters. These are further
used to generate appropriate values for input parameters. Woit [1993] provides the
semantics of input classes that specify how the input variable arguments are selected.
The selection criteria include value selection according to either a uniform distribution
or a condition function. Hamlet et al. [2001] consider inputs a semi-inclusive man-
ner. Clearly there is an attention to inputs through the explicit specification of input
domains and attention to the constraints between inputs through the explicit consid-
eration of transformations of the input domain by components being executed in the
call sequence preceding the component of interest. In Musa [1993], identification of
input variable space and partitioning of the input variable space are explicit steps of
the construction of the OP. In this, he discusses how to identify the valid and invalid
inputs, and their possible states (i.e., values).

ACM Computing Surveys, Vol. 46, No. 3, Article 39, Publication date: February 2014.

Software Testing with an Operational Profile: OP Definition 39:21

3.3. Dependency Classes

This section describes the Dependency class of OP. The Dependency class is divided into
the classes Code Dependency and Field-of-Interest Dependency. Refer to Table V for a
classification of the papers reviewed with respect to these two classes.

3.3.1. Code Dependency Class. If the definition, construction, or use of the OP re-
quires knowledge about or access to the internal structure or to the internal data
of the source code of the software application under consideration, then the OP is
referred to as white-box. Otherwise, if the code of the software application under con-
sideration is not needed to construct or run the OP, it is referred to as black-box.
A black-box OP views the software application as a black, closed box where inter-
nal code details are not available and only external input and output interfaces are
known and can be accessed. On the other hand, a white-box OP views the software
application as an open box that makes all internal information, structures, and data
available.

An example of white-box OP would be the OP provided in Gittens et al. [2004].
The defined structural and data profiles need access to information of the software
application that is only available at the internal code level, such as data types and
structures (arrays, linked lists, abstract types, database tables, etc.) and measurable
quantities of data structures (number of rows/columns of arrays, tables’ length, etc.).
The software code is also instrumented to obtain and monitor the required information
at runtime.

Other research work analyzed follows a black-box OP approach. All information
needed about the software application is found in available usage data (e.g., histori-
cal data, experimental data, expert judgment), high-level software specifications (e.g.,
requirements documents, software manuals), or at the level of the external software
interfaces (e.g., API—Application Programming Interface, such as the public attributes
and methods defined in an object-oriented class). Also, the usage models provided (e.g.,
Markov chains, statecharts) do not include internal states of the software application.
This is consistent with the well-known principle that a usage model is not meant to
represent the behavior of the system but the use of the system; therefore, there should
be no need for modeling the internal states of the system (e.g., see Prowell [2003]).
Note, however, that the modeling methodology defined in Guen et al. [2004] encom-
passes the notion of the “internal state of the system under test” and differentiates it
from the states of the Markov chain. However, there is no evidence that internal details
of the software are used or required to build or apply in practice the models employed
(see Dulz and Zhen [2003] and Guen and Thelin [2003]). Although it is sometimes
referred to as a white-box approach due to its treatment of a system as a collection
of components, the approach by Hamlet et al. [2001] is categorized here as black-box
according to the presented definition.

3.3.2. Field-of-Interest (FOI) Dependency Class. An OP that has been primarily developed
for use with systems from a particular application area (e.g., enterprise applications,
embedded systems, web applications, GUI-based systems, reactive synchronous sys-
tems) is referred to as FOI-specific OP; otherwise, it is an FOI-independent OP.

Most OP methodologies have been developed to be generic and independent from any
particular application area. The OP methodologies proposed by Musa [1992, 1993] and
Whittaker and Thomason [1994] have been used by many practitioners and applied to
multiple systems and application area (see also Section 3.1.5).

The need for developing a FOI-specific OP arises because a generic OP might not be
suitable to certain types of applications and because a FOI-specific OP will commonly
lead to the generation of tests of higher efficiency and of more accurate results for

ACM Computing Surveys, Vol. 46, No. 3, Article 39, Publication date: February 2014.

39:22 C. Smidts et al.

the specific set of applications targeted. Brooks and Memon [2007] apply and extend
Whittaker and Thomason’s approach and related approaches to GUI systems, whereas
Bousquet et al. [1998] have worked on the Reactive Synchronous Systems field. The
consideration of specific areas may lead to the development of new structures, for
example, probabilistic event flow graphs for GUIs, or to add dimensions to existing
structures (e.g., a time index for the tree structure in Bousquet et al. [1998]).

3.4. Development Classes

This section describes the Development class of OP. The Development class is divided
into the classes Lifecycle Phase and Tool Support. The review results are presented in
Table V.

3.4.1. Lifecycle Phase Class. An OP that is readily built early during the lifecycle of the
software system is referred to as early OP; otherwise, it is referred to as late OP. For
example, an OP built from the requirements is an early OP, whereas that built from
the implemented software is a late OP. The building of an OP involves a number of
steps, most of them can potentially occur early in the software lifecycle. These steps
include the (1) development of the OP model, (2) derivation of probabilities, (3) anal-
ysis of the model, (4) test planning (including pass/fail criteria and stop criteria), and
(5) generation of test cases (including assessment of quality metrics about the test
cases). The test execution and analysis of test results require that the software system
(or at least a prototype) is implemented.

Ideally, the building of an OP should occur as early as possible in the software
development lifecycle (before implementation phases, preferably during requirements
analysis) and be progressively refined throughout subsequent lifecycle phases. After
the software system has been implemented and released, the OP should still change and
be improved throughout the life of the system (e.g., operation, maintenance, upgrades,
new releases).

The majority of OP analyzed in the literature can be classified as early (see Table V).
Note, however, that most of these works focus on the description and demonstration of
the major OP features without providing details about how the development of the OP
actually occurs and is progressively refined in the lifecycle of the software system. For
example, in Brooks and Memon [2007], the focus is on regression testing of GUI appli-
cations and the OP is developed from available usage information. The OP methodology
for component-based systems proposed by Hamlet et al. [2001] can be considered early
from the point of view of the system, but late with respect to an individual component
of the system given that the OP of a component needs (among others) failure rate data
calculated via random testing. On the other hand, the OP proposed by Gittens et al.
[2004] can be classified as late. In this work, the structural and data profiles seem to
require information available only during the software implementation phase, such as
internal data types and structures.

3.4.2. Tool Support Class. An OP approach that is well supported by automated tools is
referred to as automated OP; otherwise, it is referred to as nonautomated.

There are few integrated tools specifically developed for testing software with an OP.
Most of these tools belong to the area of statistical usage testing, namely: GUITAR
[Brooks and Memon 2007], JUMBL [Prowell 2003], Lutess [Bousquet et al. 1998], and
MaTeLo [Guen et al. 2004]. JUMBL and MaTeLo are meant to be FOI-independent
tools, whereas GUITAR and Lutess are specific to GUI systems and synchronous reac-
tive systems, respectively. However, these tools may not provide full automation. For
example, as stated in Prowell [2003], “JUMBL does not directly support construction
of models or automated execution of test cases.”

ACM Computing Surveys, Vol. 46, No. 3, Article 39, Publication date: February 2014.

Software Testing with an Operational Profile: OP Definition 39:23

Table VIII. Examples of Testing and Modeling Tools Able to Be Used to Support OP Testing

Tool Modelling
Test

Generation
Test

Execution Source∗

AETG � aetgweb.argreenhouse.com
AutoFOCUS � autofocus.in.tum.de/index.php/Main_Page
DGL � cs.baylor.edu/∼maurer/dgl.html
JUnit-based � � � www.junit.org
ModelJUnit � � cs.waikato.ac.nz/∼marku/mbt/modeljunit/
Objecteering � objecteering.com/products_uml_modeler.php
Poseidon � www.gentleware.com
Rational
Robot

� ibm.com/software/awdtools/tester/robot/

Rational
Rose

� ibm.com/software/awdtools/developer/rose/

Rational Tau � � � www-01.ibm.com/software/awdtools/tau/
Reactis � � � www.reactive-systems.com
Stateflow � www.mathworks.com/products/stateflow/
TGV � irisa.fr/pampa/VALIDATION/TGV/TGV.html
T-VEC � � � www.t-vec.com
∗Last accessed: 1/18/2013.

Some OP approaches take advantage of existing general-purpose testing and mod-
eling tools. For example, Popovic and Kovacevic [2007] create a testing environment
that combines JUnit to automate the execution of test cases, while Zhen and Peng
[2004] suggest the use of Rational Rose and Telelogic Tau (now Rational Tau) for model
specification in MaTeLo. These and other related tools are listed in Table VIII.

Most tools in Table VIII that provide modeling capabilities are based on UML, finite
state machines, or statecharts. MaTeLo [Guen et al. 2004; Zhen and Peng 2004] and
JUMBL [Prowell 2003] also use a number of tools specific to Markov chains such as the
Markov Usage Editor (MU), an editor for Markov chains; The Model Language (TML), a
notation for specifying Markov chains; the Markov Chain Markup Language (MCML),
an XML-based notation for representing Markov chains; and the Model Markup
Language (MML), an XML-based markup language also used to represent Markov
chains.

Table VIII also includes tools that provide test case generation and execution capabil-
ities. The description of test cases is often done in the Testing and Test Control Notation
(TTCN) (e.g., see MaTeLo [Guen et al. 2004]) or in XML (e.g., see the Test Case Markup
Language (TCML) tool used in JUMBL [Prowell 2003]). Conversely, Shukla et al.
[2004b] use Object-Z to specify oracles for pass/fail test criteria and JUMBL [Prowell
2003] integrates Graphviz/Graphlet tools for the representation of test results. For the
reliability analysis of test results, Arora et al. [2005] use the Computer-Aided Software
Reliability Estimation (CASRE) tool.

4. OP META-MODEL

The OP classes shown in Figure 6 are represented as a meta-model in Figure 7. The
OP meta-model is built to enhance the understanding of the various concepts required
to build the OP and the relationship between these concepts. These relationships indi-
cate that the definition of OP is multifaceted. The definition of each concept is provided
in Table XIII in Appendix B. Each of these concepts, the important relationships be-
tween them, and the ways they are addressed in the literature reviews are provided
in Sections 3.1 through 3.4. Some of these concepts are further developed into other
meta-models provided in Appendix B.

ACM Computing Surveys, Vol. 46, No. 3, Article 39, Publication date: February 2014.

39:24 C. Smidts et al.

Figure 6 illustrates that an OP is composed of one or multiple Profiles. A Profile is
related to a Structure and has multiple Inputs. The concepts of Profile, Structure, and
Input are further elaborated in Figures 9, 10, and 12 in Appendix B.

An OP can be defined at different Abstraction Levels such as System Level or Com-
ponent Level. A System-Level OP and a Component-Level OP are related to each other
through the Context. The Context is a set of mapping relationships derived from the
System-Level OP. Based on these mapping relationships, the Component-Level OP is
modified, thus placing the Component-Level OP in the context of the system.

An Application OP is an aggregate of one or multiple OPs and may also contain an
Executive Scope Profile. An Application OP is also related to Source Code, which may
or may not be required when defining the OP.

An OP may consider Critical Operation, External Error, or Input Data information in
its definition. The Input Data is characterized by its variable name, values, data-type,
and input data constraints.

Consideration of one or multiple Fields-of-Interest leads to the extension of an already
defined OP. The Field-of-Interest consideration can also lead to a significant change in
the Structure of the Profile, or may simply add dimensions to the Inputs of the Profile.

5. DISCUSSION AND OPEN RESEARCH QUESTIONS

The following section discusses open research questions that were identified throughout
this review. The discussion first addresses specific research issues for each of the OP
characteristics followed by more general considerations. Pairwise relations between
OP characteristics are examined last.

Profiles: Rules should be defined to specify which profiles should be used for a
given application. Issues of cost and coverage should be considered in addressing this
problem.

Structure: Rules should be defined to specify which structure should be used in
the context of a given profile and which should be used for a specific application. In
addition, a simplified representation of complex models, expansion and compression of
models, and rules of abstraction to handle state explosion for complex systems
[Whittaker and Poore 1993] should also be defined. Finally, relationships to profile
type should be examined to determine whether a particular profile type dictates a
particular structure.

Probability of Occurrence: The state of the art does not provide an analysis of
advantages and disadvantages of these different approaches for calculating OP
probabilities. An N-conditional approach (with N � 1) should provide more accurate
results [Brooks and Memon 2007] at the expense of higher testing effort and cost.
However, one would also need to take into account other aspects that contribute to the
definition, value, accuracy, and representativeness of the OP probabilities such as the
data source used to derive probabilities (e.g., field data, experimental data, heuristics),
the models employed to represent the system’s use (e.g., Markov chains, statecharts),
the number and type of profiles considered (e.g., usage profile, user profile, customer
profile), and the depth of dependency permitted (e.g., in modeling languages, test
generation algorithms, automated tools).

Another topic for future research would be to consider additional types of stochastic
dependencies. Dependencies may also arise due to the type, time, and ordering of past
events and these could also have an impact on the occurrence probability of future
events and thus constitute additional dimensions of analysis.

Computability: Rules should be developed to define when the use of an executable
might be warranted. This also should include performance studies.

Abstraction Level: As demonstrated through this literature review, the literature
on defining OPs for software components is scarce. Issues of relation between OPs at

ACM Computing Surveys, Vol. 46, No. 3, Article 39, Publication date: February 2014.

Software Testing with an Operational Profile: OP Definition 39:25

the system level and OPs at the component level are still open and require further
study. Experiments should be performed to validate hypothesized relationships
between system-level and component-level OPs [Hamlet et al. 2001], and tools should
be developed to perform the experiments. Rules must be defined to determine the level
of component granularity. The issue of reusability of the OP of components should be
studied further and mapping relations must be defined.

Originator: Methods for grouping and characterizing users and customers into
meaningful groups should be explored further [Brooks and Memon 2007; Gittens
et al. 2004; Juhlin 1992] and validated [Elbaum and Narla 2001]. In addition, one
might investigate the use of models of human interaction with computers to char-
acterize detailed behavior, especially if one wishes to characterize erroneous behavior
[Shneideman and Plaisant 2010; Fabio et al. 2012]. See also the discussion under Input
Data.

Software Scenarios: The use of techniques that define scenarios other than the
ones proposed in the papers investigated here should be explored and the extent to
which they can contribute to building an OP should be analyzed. Such techniques
might include event trees, fault trees, event sequence diagrams, Petri-nets, and sim-
ulations of models (e.g., simulations of physical processes that interact with software
systems). In general, OPs could be extracted from behavioral models of the system
within the software and a more extensive analysis of OP-generation techniques from
system models should be designed.

Mode: There are no open issues related to Mode.
Configuration: Mapping rules to transform the OP of one software version into

the OP of another version of the same software [Brooks and Memon 2007] should be
developed. The completeness of the operating environment configuration specification
(including external hardware and software) of the application OP must also be
evaluated [Whittaker and Voas 2000].

Critical Operations: Relationships between domain and critical operations should
be examined. None of the work on safety classification appears in the existing OP
literature. The notion of consequence of the failure of an operation is also not formally
part of the OP.

Executive Scope: Information on faults originating from the operating system,
hardware platform, and concurrent tasks is scarcely considered in OP development
[Whittaker and Voas 2000]. Different methods that provide this information should be
evaluated and feasibility analysis of inclusion of executive scope in OP development
should be conducted.

External Errors: Little attention has been given in the literature to the systematic
study of external errors. Because these are likely contributors to software failures,
systematic approaches that support these aspects of OP definition should be developed
(e.g., see Wei et al. [2010] for an approach to systematically analyze input failures for
software used in safety critical applications typically studied in a risk-based framework,
e.g., probabilistic risk assessment models).

Input Data: Input data has a strong relation to the originator. A better under-
standing of the originator may help characterize input data. Questions that much be
answered include the degree to which a characterization of the data is required and
in what context. Because it has the lowest granularity level, input data is possibly
the most difficult to predict. In addition, there seems to be an interest in developing
approaches for data grouping based on semantic characterization [Gittens et al. 2004].

Code Dependency:Very few papers discuss code dependency. Rules should be de-
fined to specify when code should be used to develop the OP and when the benefits of
doing so outweigh the disadvantages (i.e., the cost and the fact that the final OP would
be available only in the later phases of software development).

ACM Computing Surveys, Vol. 46, No. 3, Article 39, Publication date: February 2014.

39:26 C. Smidts et al.

Table IX. Pairs of Classes with Significant Correlations

Class Class with Significant Correlation
Profile Configuration
Abstraction Level Input Data

Tool Support
Mode Input Data
Configuration Critical Operations

Executive Scope
Lifecycle Phase

Critical Operations Executive Scope

Field-of-Interest Dependency: FOI dependency must be clarified further. One
should also explore the effects of domain characteristics on OP domain. Domain tailor-
ing rules could be created.

Lifecycle Phase: Research challenges may include the quantification of benefits and
costs of early OPs versus late OPs, the development of a process for (formal) continuous
refinement of the OP during the development lifecycle, and the analysis of reusability
aspects across systems and projects.

Tool Support: While tools have been developed to support certain aspects of OP
definition and development, more efforts directed toward the development of efficient
tools are warranted [Hamlet et al. 2001; Shukla et al. 2004a]. A comprehensive survey
of existing tools and analysis of their contributions toward the building of OP should
be undertaken. No real benchmarking of tools for OP construction exists, and not all
profile types are supported by tools.

General: Other research issues include the following: (1) Currently, no measures
of OP quality exist. If defined, such measures could include measures of completeness
[Brooks and Memon 2007]. (2) Studies focused on the issue of OP scalability [Hamlet
et al. 2001] should be undertaken, especially for large systems. (3) An efficient and
cost-effective process of OP model construction should be defined for OP definition
[Whittaker and Poore 1993].

OP Meta-model: The OP meta-model is a first step toward the standardization of
the OP. Building tools conforming to a standard OP meta-model will ensure a unified
OP construction and will enhance interoperability.

Correlation Analysis
It is also interesting to determine whether particular OP classes are correlated. Corre-
lation coefficients between pairs of classes were calculated and pairs of classes that dis-
play significant correlations (95% confidence) [Cramer 1997; Rosenberg and Binkowski
2004] are given in Table IX.

The pairwise distribution of papers for each combination of significantly correlated
classes is given in Table X.

As an example, a significant correlation exists between Profile and Configuration,
which stems from the fact that profile developers will first and foremost focus on the
set of operations that the software application should carry out rather than on issues
related to configuration (which are related to the development of a configuration
profile). Therefore, if a single profile is used, it will not be related to configuration.

As another example, a significant correlation exists between Critical Operations and
Executive Scope. Critical Operations typically appear in applications whose failures
have significant consequences. Therefore, it is expected that such applications would
be required to function in stable, reliable, and sometimes real-time environments. This
would require a characterization of this operating environment (i.e., the Executive
Scope), hence the existence of the correlation.

ACM Computing Surveys, Vol. 46, No. 3, Article 39, Publication date: February 2014.

Software Testing with an Operational Profile: OP Definition 39:27

Table X. Pairwise Distribution of Classes Significantly Correlated (Chi-Square Critical Values: For a 2×2 Matrix
c > 3.84; for a 2 × 3 Matrix c > 5.99; for a 2 × 4 Matrix c > 7.82; for a 3 × 4 Matrix c >12.59)

It should be noted that while some significant correlations are expected to exist
between pairs of classes, they may not appear in this body of work. For example, we
would expect a significant correlation to exist between External Errors and Critical
Operations.

6. CONCLUSION

This article is dedicated to the characterization of the OP model used to generate test
cases. The OP model is described in terms of classes (i.e., dimensions of the classifica-
tion) and a meta-model that describes the relationships between classes is defined. An
example of such a relationship is the need for an OP to be configuration-aware prior to
being able to be executive-aware, while the reverse is not true (Table V).

Musa [1993] defined the OP as a “quantitative characterization of how a system
will be used.” Our review has shown that a variety of OP models can be constructed
that are dependent on the field-of-interest of the application under test, the criticality
of the application, the selected scope, and the degree of accuracy in replicating the
environment in which the application will function, capture its dynamic properties,
and so on. The OP classes provide a taxonomy that differentiates and analyzes OP
characteristics from several perspectives: common features (profiles, structure, scenar-
ios, etc.), software boundary (modeling of events and errors such as invalid inputs or
operating system/hardware errors), dependency (code dependency, and field-of-interest
dependency), and development (lifecycle phases, and tool support).

ACM Computing Surveys, Vol. 46, No. 3, Article 39, Publication date: February 2014.

39:28 C. Smidts et al.

In the authors’ opinion, as the complexity of software systems increases, development
of an OP becomes increasingly challenging. The complexity arises particularly due
to the increased interplay between the system components and varied nature of the
system users (e.g., Web-based or distributed systems OPs). Thus, the characterization
of the probability of occurrence of events becomes a difficult task. To resolve such
issues, complex structures must emerge. The emergence of such new structures or the
unconventional use of existing structures is observed in papers reviewed where authors
have either introduced entirely new structures [Brooks and Memon 2007; Woit 1993]
or force-fitted complex interaction probabilities to existing structures [Bousquet et al.
1998]. The complexity of characterizing probabilities of occurrence further increases in
the early stages of software development. As an attempt to resolve this issue, Kumar
[2008] has proposed the use of linguistic variables and fuzzy-logic based OPs.

The issue of an ideal OP as pointed out by [Juhlin 1992] is still unaddressed. It is
obvious that an OP cannot be all-inclusive. As such, researchers have primarily tried
to find pragmatic approaches best suited to the application of interest. However, which
OP would be best suited to the application under consideration is unclear. As such,
OP selection rules must be defined. To address the ideal OP issue further, various
measures related to properties such as completeness, scalability, cost-effectiveness,
and feasibility must be studied.

The chronological analysis of the paper does not show any specific trend in OP devel-
opment. The concerns seem to be uniformly addressed over time. Many single-profile
OPs, especially with state-based structures, can potentially be extended to multiple
profiles; however, no such extension mechanisms or rules are provided. In 8 out of
17 papers, we see that the originator is unspecified. More research should be per-
formed in characterizing the nature of the originator to build more accurate OPs. Only
2 out of 17 papers use a white-box approach to OP construction. Even though it is
desirable to begin constructing OPs early in the development phase, extensions and
update mechanisms should be defined to integrate code-level information late in the
development. This will contribute toward completeness of the OP.

Overall, we believe that classifications and taxonomies developed from multiple an-
gles and perspectives provide valuable and unique viewpoints and understanding of
the use of OP. In this paper, effort has been given not only on describing, reviewing,
and assessing the state of the art and practice but also on providing analyses ori-
ented toward the development of future extensions and improvements of theories and
techniques that involve OP model development.

APPENDIX A: APPENDIX TO METHODOLOGY

Table XI. Complete List of Paper Sources

Conferences Papers
International Symposium on Software Reliability Engineering (ISSRE) 6
Reliability and Maintainability Symposium (RAMS) 2
International Symposium on Software Testing and Analysis (ISSTA) 1
Software Technology and Engineering Practice (STEP) 1
Asia-Pacific Software Engineering Conference (APSEC) 1
International Conference on Automated Software Engineering (ASE) 1
Conference and Workshops on the Engineering of Computer-Based Systems (ECBS) 1
International Conference on Software Engineering (ICSE) 1
Journals Papers
ACM Transactions on Software Engineering and Methodology (TOSEM) 1
IEEE Software 1
IEEE Transactions on Software Engineering 1
Informatica 1
Software: Practice and Experience 1

ACM Computing Surveys, Vol. 46, No. 3, Article 39, Publication date: February 2014.

Software Testing with an Operational Profile: OP Definition 39:29

Table XII. Keywords Used to Operationalize the Classification Process

Class Keywords Comments/Insights
Profile customer profile, user profile,

configuration profile,
system-mode profile, data
profile, process profile

If the OP contains one profile, it was classified as
single-profile; else, multiple-profile. The concept of
multiple profiles led us to investigate different types of
inputs and their providers. Because of the varied
nature of providers, we created the originator class.

Structure Markov chain, state machine,
statechart, set, tree, hierarchy,
flow graph, graph, model

The structures found with these keywords resulted in
two important insights. First, probability of occurrence
is a property of the structure and is not a distinct class.
Second, computability, which accounts for usage
dynamics, is a property of the modeling technique
used. Upon realizing these dependencies, we removed
these two classes from our original classification. Also,
some unconventional and hybrid (state-based plus
tree) structures were discovered. After analyzing these
papers’ context, we formed the class field-of-interest.
We found that the structure and inputs of an OP are
modified based on fields of interest.

Abstraction
Level

component, module

Originator user, event, customer, input,
human

The class was an outcome of the analysis of multiple
profiles.

Scenario sequence, scenario, event
sequence, execution sequence.

Mode mode, state, overload,
administra–, startup,
shutdown, nominal

Configuration operating system,
configuration, hardware

During our analysis of the configuration class, we
discovered two categories of elements: (1) elements
that belong to different layers of the computer running
the software application, and (2) elements that are
external to the computer. This led to the development
of the executive scope class, broadly classified under the
boundary class. The relationship is explored in detail
in Figure 9.

Critical
Operations

critical, infrequent, high
consequence, severity, rare

Input Data input, data, data type, data
range, event, operation,
message, data name

During our analysis of inputs, we discovered that input
data and input data type were formally defined in some
papers. This explicit treatment of the input led to the
input data class.

Executive Scope hardware, platform, CPU,
RAM, OS

If an OP explicitly considers a software application’s
executive layers (hardware platform), operating
system, or other system or user tasks that concurrently
execute and compete for executive resources, then the
OP is executive-aware; else, it is executive-unaware.

External Errors error, illegal, faulty, invalid,
external

Code
Dependency

source code, code, program

Field-of-
Interest
Dependency

domain, synchronous,
real-time, multimodal, GUI

This class was an outcome of our analysis of the
structure class.

Lifecycle Phase specification, code,
requirements, design, test,
implementation, life cycle

Tool Support jumbl, lutess, matelo, auto,
tool, junit, Poseidon, rational,
spectest, stateflow, manual–

ACM Computing Surveys, Vol. 46, No. 3, Article 39, Publication date: February 2014.

39:30 C. Smidts et al.

APPENDIX B: APPENDIX TO META-MODELS

Table XIII. Operational Profile Meta-Model

Elements Description
1. Operation Profile

(OP)
An operational profile is a set occurrence probabilities that characterizes the usage
of an application.
Attributes:
Executable: Boolean {default = “N”}
Defines whether the OP relies on an executable model or not. If “Y,” the OP relies on
an executable model. If “N,” the OP does not rely on an executable model.
LPhase: string
Defines the point in the development lifecycle phase at which the OP is first built.
For instance, “early” (before implementation) or “late” (after implementation).
ToolSupp: Boolean {default = “N”}
Defines whether the OP approach is supported by tools. If “Y,” a tool support is
present. If “N,” a tool support is not present.

2. Profile The profile is a cross-sectional usage view of the application along a given
dimension. It includes the elements that make up that dimension and the
occurrence probabilities of such elements during use. For example, the “functional
dimension” view leads to the notion of a “functional profile” which is the set of
functions that the application should implement and their occurrence probabilities.
The “user dimension” leads to the notion of “user profile,” which partitions the users
of the application into distinct groups with various patterns of usage and provides
the probability of a user belonging to such a group.
A single or multiple profiles form(s) an operational profile.

3. Structure Structure defines the type of mathematical model used to describe the operational
profile.
Models identified in the literature so far include trees, Markov chains, Harel
statecharts, probabilistic event flow graphs, and sets.

4. Input Input defines the set of inputs to the application. It includes events as well as actual
data.

5. Abstraction Level Abstraction level defines whether the OP is built for a system or for a component of
the system.

6. System Level System level represents cases where the OP is developed for the software as a whole.
7. Component Level Component level describes cases where the OP is developed for the software seen as

a component of a larger system.
8. Context Context is defined as the mapping relationships between system-level OP and

component-level OP. The component is assumed to belong to a system operating in
an environment characterized by system-level OP.

9. Executive Scope
Profile

Executive scope profile is the portion of the OP that describes inputs generated by
the executive layer (i.e., Operating system, computer hardware, and application
NOP).

10. External Error External error defines whether or not the OP includes erroneous external inputs.
11. Field-of-Interest Field-of-interest refers to particular application area (e.g., web applications,

embedded applications, multi-modal (here modal refers to speech, keyboard).
Field-of-interest dependence determines whether a special type of OP should be built
to allow inclusion of the particular characteristics of the application field of interest.

12. Source Code Source code of the software application for which the OP is being developed.
The OP may or may not require access to the source code. If access to the source code
is required the OP is labeled as white-box; otherwise, it is termed as black-box.

13. Application OP Application OP is the OP of the application under consideration.
14. Critical

Operation
Critical operation is defined as the set of low probability of occurrence operations or
functions whose malfunction might lead to severe system-level consequences.

15. Input Data Input data is a type of input. Input data is includes variables with their names,
values, types and the constraints they need to satisfy.

16. Variable Name Name of an input data variable.
17. Values Values taken an input data variable.
18. Data Type Data type (e.g., integer) of an input data variable.
19. Input Data

Constraint
Constraint imposed on the input data. An input data constraint may involve one or
multiple input data variables.

ACM Computing Surveys, Vol. 46, No. 3, Article 39, Publication date: February 2014.

Software Testing with an Operational Profile: OP Definition 39:31

Fig. 8. Executive scope meta-model.

Table XIV. Executive Scope Meta-Model

Element Description
1. Executive Scope Profile See Table XIII.
2. Executive Scope The executive scope encompasses the

software’s executive layers such as the
hardware platform (which provides
basic software executive resources
such as CPU and RAM) and the
operating system software (which
manages the basic executive resources
and provides higher-level ones such as
scheduling, synchronization, and file
system).

3. Application OP See Table XIII.
4. Application NOP Application NOP is the OP of software

applications distinct from but residing
on the same computer platform as the
application under consideration.

5. Operating System Software
(OS SW)

“A collection of software” [. . .] “that
controls the execution of computer
programs and provides such services
as computer resource allocation, job
control, input/output control, and file
management in a computer system”
(modified from [IEEE 24765]).

6. Computer Hardware
(CompHW)

“Physical equipment used to process,
store, or transmit computer programs
or data” [IEEE 24765].

7. Device Driver “A computer program that controls a
peripheral device and, sometimes,
reformats data for transfer to and from
the device” [IEEE 24765].

ACM Computing Surveys, Vol. 46, No. 3, Article 39, Publication date: February 2014.

39:32 C. Smidts et al.

Fig. 9. Profile meta-model.

Table XV. Profile Meta-Model

Elements Description
1. Profile See Table XIII.
2. Structure See Table XIII.
3. Configuration “The arrangement of a computer system or component as defined by the

number, nature, and interconnections of its constituent parts” [IEEE 24765].
A configuration could be physical or logical. It is the environment in which
one or more usages make take place [Juhlin 1992].

4. Configuration
Profile

“The notion of configuration leads to the notion of configuration profile”
[Juhlin 1992]. A configuration profile provides the probability of occurrence
of various configuration of the application of interest.

5. Executive Scope See Table XIV.
6. Application OP See Table XIII.
7. Probability of

Occurrence (Prob
Occ)

Probability of occurrence is the probability of occurrence of the elements
used to define the OP (i.e., events, input data, operations, functions).
Probability dependency is defined using attribute “condition” of the
“probability of occurrence.” Condition is meant to contain a set of events.
The length of the set denotes the number of previous events to be considered
and thus the Value of “N” is N-conditional. If the length is zero, the
probability of occurrence is unconditional. This would be represented with a
condition of “φ.” The length determines to some extent the acceptable
structure of the OP. A length of “1” entails a Markov model.
Attributes:
Prob: Real

The value of the probability of occurrence of the associated element
(i.e., event, node, or entity)

Condition [0..∗]: <enumeration>

Specifies the set of conditional elements. The condition type is
<enumeration>, which could be a set of events, nodes, entities, or
states, etc. that is specific to the structure being used to define the profile.
The <enumeration> is typically an ordered set.

Operations
Prob()

This method calculates the probability value based on the condition
specified. Typically the value is calculated from a known probability
distribution function (pdf).

Continued

ACM Computing Surveys, Vol. 46, No. 3, Article 39, Publication date: February 2014.

Software Testing with an Operational Profile: OP Definition 39:33

Table XV. Continued

Elements Description
8. Scenario Scenario is a sequence of user or externally generated inputs (mostly

sequences of events) that accomplish a specific application goal.
A profile incorporates the scenario information (scenario-aware) or not
(scenario-unaware).
Constraints
C1: OP.Profile.Scenario

Event.isOrdered = “Y”
9. Mode A mode represents a state or a set of states [Bousquet et al. 1998;

Whittaker and Thomason 1994].
A mode can also be a set of functions or operations that are grouped for
convenience in analyzing execution behavior [Musa 1993]. The modes form
the system mode profile [Arora et al. 2005, Musa 1993] or the process
mode profile [Gittens et al. 2004].
A profile could be mode aware or mode unaware.

10. Event An event is defined as an occurrence at a particular point in time that may
lead to a change in the state of the application.
Attributes:
isOrdered: Boolean {default = N}

Specifies whether the event is ordered. If “Y,” the event is ordered.
If “N,” the event is not ordered

11. Application NOP See Table XIV.
12. External Hardware

(Ext HW)
External Hardware is a collection of hardware components external to the
computer hardware under consideration. The computer hardware under
consideration is the computer hardware on which the application under
consideration is running.

13. External Software
(Ext SW)

External software is the collection of software components that runs on the
external hardware and interfaces with the application under
consideration.

Fig. 10. Structure meta-model.

ACM Computing Surveys, Vol. 46, No. 3, Article 39, Publication date: February 2014.

39:34 C. Smidts et al.

Table XVI. Structure Meta-Model

Elements Descriptions
1. Structure See Table XIII.
2. Tree This structure corresponds to a rooted labeled tree, that is, there is one

root, nodes are labeled, and edges are directed away from the root.
3. Node Vertex of the tree structure.
4. Branch Edge of the tree structure.
5. Originator Originator characterizes the entity at the origin of inputs driving the

software application. The application is either mostly driven by human
events or less specifically by system inputs (i.e., human /HW/SW
inputs).

6. Probability of
Occurrence

See Table XV.
Constraints
C2: OP.Profile.Structure.MarkovChain.Transition
ProbabilityOfOccurrence.condition.size = [1]
C3: OP.Profile.Structure.MarkovChain.Transition
ProbabilityOfOccurrence.condition.type = previous state

7. State-Based Structure that uses states as primitive.
8. Markov Chain A Markov chain is collection of random variables Xt (where the index

“t” runs through 0, 1, . . . and Xt represents the state of the system at
index “t”) having the property that, given the present, the future is
independent of the past.

9. State A state is defined as “the values assumed at a given instant by the
variables that define the characteristics” of the application under
consideration or of its components [IEEE 24765].

10. Transition A transition is defined as a change from one state to another. A
transition is typically triggered by an event.

11. Event See Table XV.
12. Probabilistic Event

Flow Graph (PEFG)
“An Event flow graph (EFG) is specific model of the GUI for a particular
application, representing all possible sequences of events that a user
can execute on that GUI. Nodes in the EFG represent events, and
directed edges represent the event-flow relationship between two
events.” The nodes are annotated with probability tables. [Brooks and
Memon 2007]

13. Harel State Charts Harel statecharts “extend conventional state-transition diagrams with
essentially three elements, dealing, respectively, with the notions of
hierarchy, concurrency and communication” [Harel 1987].

14. Set Set is defined as a collection of distinct entities.
15. Entity Entity is defined as an element of interest. For example operations,

events, input data etc.

Fig. 11. Originator meta-model.

ACM Computing Surveys, Vol. 46, No. 3, Article 39, Publication date: February 2014.

Software Testing with an Operational Profile: OP Definition 39:35

Table XVII. Originator Meta-Model

Elements Description
1. Originator See Table XVI.
2. MembershipProbability Probability that the originator belongs to a certain group.

Attributes:
Prob: Real
The probability that the originator is a member of a certain
group.

3. Human One or multiple human users of the application under
consideration.

4. User “A user is a person, group, or institution that employs, not
acquires, the system” [Musa 1993].

5. Customer A Customer is the person, group, or institution that is
acquiring the system.

6. Hardware (HW) Hardware is a generalization of all the types of hardware’s
with which the computer interfaces including the internal
hardware of the computer system.

7. Software (SW) Software is a generalization of all the types of the software’s
interacting with the computer system including the
software’s installed on the computer.

8. CompHW See Table XIV.
9. OS SW See Table XIV.
10. Application NOP See Table XIV.
11. Executive Scope See Table XIV
12. External Hardware (Ext HW) See Table XV.
13. External Software

(Ext SW)
See Table XV.

Fig. 12. Input meta-model.

Table XVIII. Input Meta-Model

Elements Description
1. Input See Table XIII.
2. Probability of Occurrence See Table XV.
3. Field-of-interest See Table XIII.
4. Originator See Table XVI.
5. Nominal Input A nominal input is an input to the application under

consideration provided by an originator behaving normally.
6. Faulty Input A faulty input is an input to the application under

consideration provided by an originator behaving
abnormally/erroneously.

ACM Computing Surveys, Vol. 46, No. 3, Article 39, Publication date: February 2014.

39:36 C. Smidts et al.

Fig. 13. Probabilistic Event Flow Graph (PEFG) meta-model.

Table XIX. Probabilistic Event Flow Graph Meta-Model

Elements Description
1. PEFG See Table XVI.
2. Event See Table XV.
3. Edge An edge in the PEFG is a directed edge used to represent an

event-flow relationship. For example, an edge between e1 and e2
is used to indicate that event e2 may be invoked immediately
after event e1 [Brooks and Memon 2007].

4. PEFGNode A PEFGNode represents an event.
5. Originator See Table XVI.
6. Human See Table XVII.
7. PEFGTable(k) A PEFGTable is the conditional probability

table for an event e given subsequences of events up to length k.
8. Probability of Occurrence See Table XV.

Constraints
C4: OP.Profile.Structure.PEFG.Event
ProbabilityOfOccurrence.condition.maxsize = k

Fig. 14. Woit meta-model.

ACM Computing Surveys, Vol. 46, No. 3, Article 39, Publication date: February 2014.

Software Testing with an Operational Profile: OP Definition 39:37

Table XX. Woit Meta-Model

Elements Description
1. Set See Table XVI.
2. WoitCategory A WoitCategory is defined as either an Execution Prefix

Category or an Input Category.
3. ExecutionPrefixCategory

(EPCat)
An Execution prefix category is a subset of the set of prefixes
such that for each EP Cat the user is able to define the
probability of selecting the next input from each IC.

4. InputCategory (IC) An Input Category is a subset of the input domain such that for
each EP Cat the user is able to define the probability of selecting
the next input from each IC.

5. ExecutionPrefix (EP) An execution prefix is any subsequence of a module execution
such that the subsequence begins with the module initialization
or re-initialization.

6. WoitInput A WoitInput is defined as an event possibly accompanied by an
argument (i.e., data).

7. Event See Table XV.
8. Probability of Occurrence See Table XV.

Contraints
C5: OP.Profile.Structure.WoitCategory.Event
ProbabilityOfOccurrence.condition.type = EPCat
C6: OP.Profile.Structure.WoitCategory.EPCat.EP
Event.isOrdered = Y

9. Entity See Table XVI.

REFERENCES

S. Arora, R. B. Misra, and V. M. Kumre. 2005. Software reliability improvement through operational profile
driven testing. In Proc. of the 53rd Annual Reliability and Maintainability Symposium. 621–627.

L. D. Bousquet, F. Ouabdesselam, and J.-L. Richier. 1998. Expressing and implementing operational profiles
for reactive software validation. In Proc. of the 9th International Symposium on Software Reliability
Engineering (ISSRE’98). 222–230.

P. A. Brooks and A. M. Memon. 2007. Automated GUI testing guided by usage profiles. In Proc. of the 22nd
IEEE/ACM International Conference on Automated Software Engineering (ASE’07). 333–342.

K. Charmaz. 2006. Constructing Grounded Theory: A Practical Guide through Qualitative Analysis. Sage,
Thousand Oaks, CA.

J. Corbin and A. Strauss. 2008. Basics of Qualitative Research: Techniques and Procedures for Developing
Grounded Theory 3rd Ed. Sage, Thousand Oaks, CA.

D. Cramer. 1997. Basic Statistics for Social Research: Step-by-Step Calculations and Computer Techniques
Using Minitab. Psychology Press.

C. Csallner and Y. Smaragdakis. 2004. JCrasher: An automatic robustness tester for Java. Software Practice
and Experience 34, 11, 1025–1050.

W. Dulz and F. Zhen. 2003. MaTeLo—Statistical usage testing by annotated sequence diagrams, Markov
chains and TTCN-3. In Proc. of the 3rd International Conference on Quality Software. 336–342.

S. Elbaum and S. Narla. 2001. A methodology for operational profile refinement. In Proc. of the 2001 Annual
Reliability and Maintainability Symposium (RAMS’01). 142–149.

D. F. Fabio, A. Carlomusto, A. Petrillo, and A. Ramondo. 2012. Human reliability analysis: A review of the
state of the art. International Journal of Research in Management and Technology, 2, 1.

M. Gittens, H. Lutfiyya, and M. Bauer. 2004. An extended operational profile model. In Proc. of the 15th
International Symposium on Software Reliability Engineering (ISSRE’04). 314–325.

B. G. Glaser and A. L. Strauss. 2009. The Discovery of Grounded Theory: Strategies for Qualitative Research.
Aldine de Gruyter, New York.

K. Gwet. 2002. Kappa statistic is not satisfactory for assessing the extent of agreement between raters.
Statistical Methods for Inter-rater Reliability Assessment 1–6.

H. L. Guen and T. Thelin. 2003. Practical experiences with statistical usage testing. In Proc. of the 11th
Annual Workshop on Software Test and Reliability Estimation Process at Software Technology and
Engineering Practice (STEP’03). 87–93.

ACM Computing Surveys, Vol. 46, No. 3, Article 39, Publication date: February 2014.

39:38 C. Smidts et al.

H. L. Guen, R. Marie, and T. Thelin. 2004. Reliability estimation for statistical usage testing using Markov
chains. In Proc. of the 15th International Symposium on Software Reliability Engineering (ISSRE’04).
54–65.

D. Hamlet, D. Mason, and D. Woit. 2001. Theory of software reliability based on components. In Proc. of the
23rd International Conference on Software Engineering (ICSE’01). 361–370.

J. M. Hammersley and D. C. Handscomb. 1964. Monte Carlo Methods (Methuen’s Monographs on Applied
Probability and Statistics). Methuen, London.

D. Harel. 1987. Statecharts: A visual formalism for complex systems. Science of Computer Programming 8,
231–274.

B. Huang, M. Rodrı́guez, M. Li, J. Bernstein, and C. Smidts. 2011. Hardware error likelihood induced by the
operation of software. IEEE Transactions on Reliability 60, 3, 622–639.

B. Huang, M. Rodrı́guez, M. Li, and C. Smidts. 2007. On the development of fault injection profiles. In Proc.
of the 53nd Annual Reliability and Maintainability Symposium (RAMS’07). 226–231.

IEEE/ISO/IEC 24765. 2010. System and Software Engineering Vocabulary. Standards.
M. Jørgensen and M. Shepperd. 2007. A systematic review of software development cost estimation studies.

IEEE Transactions on Software Engineering 33, 33–53.
B. D. Juhlin. 1992. Implementing operational profiles to measure system reliability. In Proc. of the 3rd

International Symposium on Software Reliability Engineering (ISSRE’02). 286–295.
B. Kitchenham. 2004. Procedures for Performing Systematic Reviews. Technical Report. Keele University

TR/SE-0401, NICTA Technical Report 0400011T.1, Keele University.
P. Koopman and J. Devale. 1999. Comparing the robustness of POSIX operating systems. In Proc. of the 29th

IEEE International Symposium on Fault-Tolerant Computing. 30–37.
K. S. Kumar, R. B. Misra, and N. K. Goyal. 2008. Development of fuzzy software operational profile. Inter-

national Journal of Reliability, Quality, and Safety Engineering 15, 581–597.
T. Muhr and S. Friese. 2004. User’s Manual for ATLAS. ti 6.0. ATLAS. ti Scientific Software Development

GmbH, Berline.
J. D. Musa. 1992. The operational profile in software reliability engineering: An overview. In Proc. of the 3rd

International Symposium on Software Reliability Engineering (ISSRE’92). 140–154.
J. D. Musa. 1993. Operational profiles in software-reliability engineering. IEEE Software 10, 2, 14–32.
F. Ouabdesselam and I. Parissis. 1995. Constructing operational profiles for synchronous critical software.

In Proc. of the 6th International Symposium on Software Reliability Engineering (ISSRE’95). 286–293.
K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson. 2008. Systematic mapping studies in software engi-

neering. In Proceedings of the 12th International Conference on Evaluation and Assessment in Software
Engineering. 71–80.

S. J. Prowell. 2003. JUMBL: A tool for model-based statistical testing. In Proc. of the 36th Hawaii Interna-
tional Conference on System Sciences (HICSS’03).

M. Popovic and J. Kovacevic. 2007. A statistical approach to model-based robustness testing. In Proc. of
the 14th Annual IEEE International Conference and Workshops on the Engineering of Computer-Based
Systems (ECBS’07). 485–494.

A. Rosenberg and E. Binkowski. 2004. Augmenting the kappa statistic to determine interannotator reli-
ability for multiply labeled data points. In Proc. of HLT-NAACL 2004: Short Papers. Association for
Computational Linguistics, 77–80.

P. Runeson and C. Wohlin. 1993. Statistical usage testing for software reliability certification and con-
trol. In Proc. of the 1st European International Conference on Software Testing, Analysis and Review
(EuroSTAR’93). 309–323

J. Saldana. 2012. The Coding Manual for Qualitative Researchers (No. 14). Sage.
B. Shneideman and C. Plaisant. 2010. Designing the User Interface: Strategies for Effective Human Interac-

tion. Addison-Wesley.
R. Shukla, D. Carrington, and P. Strooper. 2004a. Systematic operational profile development for software

components. In Proc. of the 11th Asia-Pacific Software Engineering Conference (APSEC’04). 528–537.
R. Y. Shukla, P. A. Strooper, and D. A. Carrington. 2004b. A framework for reliability assessment of software

components. In Proc. of the 7th International Symposium on Component-based Software Engineering
(CBSE7). 272–279.

J. Sim and C. C. Wright. 2005. The kappa statistic in reliability studies: use, interpretation, and sample size
requirements. Physical Therapy 85, 3, 257–268.

C. Taylor, T. C. Gibbs and A. Lewins. 2005. Quality of Qualitative Analysis. Retrieved from http://onlineqda.
hud.ac.uk/Intro_QDA/qualitative_analysis.php.

ACM Computing Surveys, Vol. 46, No. 3, Article 39, Publication date: February 2014.

Software Testing with an Operational Profile: OP Definition 39:39

G. H. Walton, J. H. Poore, and C. J. Trammell. 1995. Statistical testing of software based on a usage model.
Software—Practice and Experience 25, 1, 97–108.

Y. Wei, M. Rodrı́guez, and C. Smidts. 2010. PRA framework for software propagation analysis of failures.
Journal of Risk and Reliability 224, 2, 113–135.

E. J. Weyuker. 1998. Testing component-based software: A cautionary tale. IEEE Software 15, 5, 54–59.
J. A. Whittaker and J. Voas. 2000. Toward a more reliable theory of software reliability. IEEE Computer 33,

12, 36–42.
J. A. Whittaker and J. H. Poore. 1993. Markov analysis of software specifications. ACM Transactions on

Software Engineering and Methodology. 2, 1, 93–106.
J. A. Whittaker. and M. G. Thomason. 1994. A Markov chain model for statistical software testing. IEEE

Transactions on Software Engineering 20, 10, 812–824.
D. M. Woit. 1993. Specifying Operational Profiles for Modules. In Proc. of the 1993 ACM SIGSOFT Interna-

tional Symposium on Software Testing and Analysis (ISSTA’93). 2–10.
J. Yan, J. Wang, and H. W. Chen. 2004. Automatic generation of Markov chain usage models from real-time

software UML Models. In Proc. of the 4th International Conference on Quality Software (QSIC’04). 22–31.
F. Zhen and C. Peng. 2004. A system test methodology based on the Markov chain usage model. In Proc. of

the 8th International Conference on Computer Supported Cooperative Work in Design (CSCWD 2004).
160–165.

Received January 2011; revised July 2013; accepted August 2013

ACM Computing Surveys, Vol. 46, No. 3, Article 39, Publication date: February 2014.

